Sources of contamination in the emission from the Local Bubble

Anjali Gupta Massimiliano Galeazzi Eugenio Ursino

<u>Outline</u>

- The Diffuse X-ray background
- Unidentified point sources
 - Spectral Properties
- The Warm Hot Intergalactic Medium (WHIM)
 - Spectral properties
 - Angular properties

The Diffuse X-ray Background

The Diffuse X-ray Background

Identification of the point sources

Mosaic images of the targets used in this investigation. The white circles represent the identified point sources.

The logN-logS

The averaged logN-logS for all the targets used in our investigation

Spectral Properties of the point sources

Average spectrum of all the sources detected in the 0.5-2.0 keV (black circles) and 0.4-0.6 keV (pink circles) bands.

The black and red curve represent the powerlaw fit with the photon index of 1.77 ± 0.01 and 1.93 ± 0.01 , for the two bands respectively.

Spectral Properties of the bright and the faint sources

Average spectrum of the bright (black) and faint (pink) sources detected in the 0.5-2.0 KeV.

The black and red curve represent the powerlaw fit with the photon index of 1.87 ± 0.01 and 1.40 ± 0.05 , for the bright and faint sources respectively.

Average spectrum of the bright (black) and faint (pink) sources detected in the 0.4-0.6 KeV.

The black and red curve represent the powerlaw fit with the photon index of 2.05 ± 0.01 and 1.69 ± 0.04 , for the bright and faint sources respectively.

The Warm Hot Intergalactic Medium

Cen & Ostriker, 1999

Borgani et al. 2004

Spatial distribution of the WHIM at z~0

Philadelphia, 22 April 2008

Flux vs. Redshift

Expected average flux in the energy range 0.370-0.925 keV due to the WHIM as a function of red-shift.

The total average flux due to the WHIM is about 5.7 photons/cm²/s/sr

The total DXB flux is about 29.3 photons/cm²/s/sr (derived using data from McCammon et al., 2002 - ApJ 576, 188).

Spectral Distribution of the

WHIM

Philadelphia, 22 April 2008

WHIM signature in the Angular distribution of X-ray images

Mosaic images of the targets used in this investigation. The white circles represent the identified point sources.

Angular Autocorrelation

$$w(\theta) = \frac{\langle I(n)I(n')\rangle}{\langle I\rangle^2} - 1$$

The fraction of X-rays due to the WHIM in the energy band 0.4-0.6 keV is

of the total diffuse X-ray emission.

Calculated AcF for the two control targets, MBM20 (squares) and the Eridanus hole (full circles), compared with the average AcF (empty circles).

The End

Philadelphia, 22 April 2008

Angular Autocorrelation

• $n^2 w(\Theta) = n_p^2 w_p(\Theta) + n_b^2 w_b(\Theta) + n_w^2 w_w(\Theta)$

ACF of the diffuse X-ray background and its components.

Acf of Hubble Deep field North

